
Welcome to Polygon Precinct!
Exploring Structure with Generative Modeling Techniques

Joanna Gerr

Massachusetts Institute of Technology

May 13, 2019

Abstract

In recent years, procedural generation has grown in popularity as a means of algorithmically generating
large amounts of content for various computer graphic (CG) and video game applications. One of the most
practical uses for procedural generation is to model large environments filled with repetitive structures—like
cities, which features as environments in many video games and other CG-reliant media. While procedural
generation for city-like structures that resemble cities superficially are not hard to come by, it is difficult to
find generative cities that take into account facets of structural planning and social engineering to represent
the intricacies of urban development. To address this, I have looked into existing methods of generating cities
and the structures within them at both the 2D and 3D scales, compared them against real-world structural
and social concerns, and improved upon representations for cities in ways that begin to account for the depth
of urban life.

I. Introduction

In the modern era, urbanity is inescapable.
The city is a sprawling, massive construct,

come into being over centuries of hard labor,
both inside and outside—and naturally, such a
continual process is subject to changes in its tra-
jectory over time. But what are the factors that
shape this trajectory? What has led to cities
becoming the structures we recognize them
as today—where steel-and-glass skyscrapers
tower across the street from rows of packed-
together townhouses?

There is no singular answer to that question.
However, with the literature of urban scientists
and architects like Jane Jacobs and Matthew
Frederick, I have been investigating the factors
that contribute to making the city what it is—
both from a structural and a social standpoint—
and then, attempting to replicate cities based
on an assemblage of these factors.

Traditional methods of procedural genera-
tion focus on algorithms as a means to an end.
Often, procedural generation is to model vast
stretches terrain or terrain-like patterns: for
instance, in generating 2D textures to simulate

water, stone, and wood; or instantiating dif-
ferent types of trees for the forests of an RPG;
or for the layout of a dungeon. Dungeon de-
sign is one of the oldest uses for procedural
generation, having been applied to pen-and-
paper Dungeons and Dragons campaigns even
before CG interfaces could visualize the dun-
geons properly. Likening pathway creation to
designing mazes, some of the first attempts
at procedural pathways for dungeons focused
assembling perfect mazes: "2D, normal, orthog-
onal, ...which simply means that the maze is
rectangular, with all passages intersecting at
right angles, and that there are no loops or
inaccessible areas in the maze[5]." From that
baseline, more paths would be added and re-
moved to make some areas more sparse with
fewer dead ends, and create cycles that allowed
for easier navigation.

When applying these traditional methods
to a city, we find that the resulting structure
may look city-esque and be navigable as a city
should be, but lacks the underlying rationale
that drives real cities to manifest as they do. In
the following sections, I will look at 2D and 3D
representations for cities, and consider ways in

1

Welcome to Polygon Precinct • May 2019

Figure 1: A sample of 3 rooms from Jamis Buck’s Dun-
geon Generator[4] with default settings.

which computer-generated models can account
for a greater spectrum of structural and societal
urban considerations.

II. Structure

In this first part of my research, I focused on
methods of generating 3D city visualizations.
The tools I used to output my own genera-
tive content were Autodesk Maya and Blender
for modeling 3D assets, and the Unity game
engine to compile models into larger-scale vi-
sualizations. The Maya Embedded Language
(MEL) scripting language was instrumental in
allowing me to procedurally generate and ex-
port different types of buildings at a high vol-
ume, but I did not want to be solely reliant
upon Maya, since the access barrier to propri-
etary software like Maya is high for anyone
who may be interested in revisiting this in the
future; this being the case, instead of sticking
solely to Maya, I also used Blender for other
modeling and animation tasks, as it is open-
source where Maya is proprietary. I chose to
use Unity because it is a free, C-based game
engine with strong 3D rendering support, and
its more robust coding capabilities would al-
low me greater flexibility when scripting algo-
rithms to assemble the cities.

As I would be generating large numbers of
buildings at any one time, all representations of
buildings I assembled are made of as few poly-

gons as possible to represent the desired ge-
ometry; this artistic style of economizing poly-
gons is called low-poly modeling. My goal was
not to model the most building-like building,
but rather, assemble geometries that suggested
consideration of factors beyond the superficial.
Hence, low-poly modeling—which is itself an
abstraction of realism into shapes—matched
my goals well. As Frederick says, "Geometric
shapes have inherent dynamic qualities that
influence our perception and experience of the
built environment[6]."

i. Buildings

My first goal was to script procedural buildings
of the type that would be built nowadays for a
city in modern-day America. Frederick notes
as tip 59 of his 101 Things I Learned in Archi-
tecture School that "Most modern buildings em-
ploy a frame of steel or concrete columns and
beams to support structural loads and transfer
the building’s weight to the earth... supported
by the super-structure every story or two[6]."
Coupling his insight with my own observations
made about buildings in the modern Ameri-
can cities of Washington DC, New York, and
Boston, I envisioned buildings that were tall
and multi-story, rectangular, and with varying
levels of complexity for this first batch.

To achieve this, I assembled methods in MEL
that would construct buildings, taking into ac-
count a parameter to determine their complex-
ity. In the main makeBuilding method from
Code 1, lines 5-9 assign variables for param-
eters that determine the overall size (height,
width, and depth) per each building with slight
random variation, seen in lines 11-13. The ac-
tual polyCube object that constitutes the base
for the building is created, repositioned, and
regrouped into the ’building’ set on lines 17-
19; then, on lines 23-30, a series of additional
complexity operations are performed upon the
base to randomize the complexity based off
the original complexity parameter passed into
makeBuilding. Last, lines 31-35 take care of
merging all instantiated objects into one build-
ing proper (rather than separated rectangular

2

Welcome to Polygon Precinct • May 2019

1 global proc makeBuilding(int
$complexity){

2 global int $comp;
3 $comp = $complexity;
4

5 float $binLower = 1;
6 float $binUpper = 2;
7 float $upperBound = 10;
8 float $lowerBound = 4;
9 int $subdivBound = 10;

10

11 float $bldH = rand($lowerBound,
$upperBound);

12 float $bldW = rand($binLower,
$binUpper);

13 float $bldD = rand($binLower,
$binUpper);

14 //...
15 sets -n building;
16

17 polyCube -w $bldW -h $bldH -d
$bldD -sx $bldW_SD -sy
$bldH_SD -sz $bldD_SD -ax 0 1
0 -cuv 3 -ch 1;

18 move -r 0 ($bldH/2) 0 ;
19 sets -in building ‘ls -sl‘;
20

21 string $sel[] = ‘ls -sl‘;
22

23 for ($each in $sel){
24 int $bldSD = rand(0,

$subdivBound/2);
25 addWindows($bldW, $bldH, $bldD);
26 addLip($bldW, $bldH, $bldD,

$bldSD);
27 addHat($bldW, $bldH, $bldD);
28 addChimney($bldW, $bldH, $bldD);
29 addAntenna($bldW, $bldH, $bldD);
30 }
31 select building;
32 string $full[] = ‘ls -sl‘;
33 string $allObjects =

stringArrayToString($full, "
");

34 polyUnite -ch 1 -mergeUVSets 1
-centerPivot -name $allObjects;

35 rename bld;
36

37 }

Code 1: Main method makeBuilding where base struc-
ture’s width, height, and depth are randomized
within bounds

prisms), convenient for exporting into Unity
later. The complexity functions from lines 23-

Figure 2: First pass at abstractly representing complex
buildings

30 refer to a series of self-describing functions
that construct more low-poly rectangular de-
tails that increase the perceived complexity of
a building through additional features. Pos-
sible features include those found on actual
buildings, such as: the number (and size) of
windows, the presence (and height) of anten-
nae and chimneys, and the appearance of a
roof’s edge and other lips at intervals along the
building exterior. Each of these features was
selected as representing an integral component
of a building; windows serve to light buildings
naturally during the day, and allow them to
serve as light sources at night; antennae func-
tion as beacons for telecommunications hap-
pening within and around buildings; and lips
serve to remind of the steel reinforcements that
form the super-structure supporting buildings
at multi-story intervals. Code 2 displays ad-
dAntenna as an example of how the method
works; in lines 4-5, the method uses the given
complexity to randomly determine whether
the current building will have an antenna. If it

3

Welcome to Polygon Precinct • May 2019

1 proc addAntenna(float $bldW, float
$bldH, float $bldD){

2 global int $comp;
3 \\...
4 int $isComplex = rand(0, $comp+8);
5 if ($isComplex < 8){
6 $dim = 0.1;
7 float $xPos = rand($dim,

$bldW-$dim) - ($bldW/2);
8 float $zPos = rand($dim,

$bldD-$dim) - ($bldD/2);
9 float $yPos = $bldH;

10 int $numLev = rand(3, 4);
11 for ($i = 0; $i < $numLev;

$i++){
12 polyCube -w $dim -h 1.5 -d

$dim -sx 1 -sy 1 -sz 1
-ax 0 1 0 -cuv 3 -ch 1;

13 move -r $xPos $yPos $zPos ;
14 sets -in building ‘ls -sl‘;
15 $dim -= rand(0.04, 0.05);
16 \\...

Code 2: Sub-method addAntenna that increases building
complexity by adding a multi-level antenna to
rooftop

passes the complexity check, a random x and z
position are chosen on the top of the building,
and the antenna is constructed at the building’s
y-height, as per lines 7-9. Then, since antennae
are oft multi-layered and decrease in size as
they grow taller, lines 10-15 deal with random-
izing the number of layers and decreasing the
size per each one. To see how these buildings
and anetenna look in practice, Figure 2 shows
a grouping of buildings with varying heights
and high complexities; all have many windows,
rooftop hats, chimneys and antennae.

These buildings worked as my first compo-
nent for modern American cities. However, not
all buildings in modern cities take after the
blockiness of those represented in Figure 2; for
instance, many American cities have a spread
of building ages represented in their makeup,
with some buildings dating back from the 19th
and 20th centuries. Frederick summarizes one
of the defining characteristics of this so-called

traditional architecture in tip 60, stating that
"Traditional architecture employs a tripartite,
or base-middle-top, format... the base is quite
heavy and thick; the top... is symbolically a
crown or hat that announces on the skyline
the building’s purpose[6]." To succinctly model
this geometry, I created a second set of feature-
generating functions, this time aimed at ab-
stracting the tripartite structure. By creating
defined bases, individualistic windows, and
roofs that embed distinct peaks into the sky-
line, I aimed to assemble models representing
"aged" buildings of the past. Figure 3 shows
the results of this abstraction.

Figure 3: Abstract representations of traditional build-
ings

Having created a procedural generator for
both modern and traditional low-poly building
abstractions, I had the bulk of what I wanted to
be using to assemble my cities. There remained
only a few more special structures I wanted to
hand-model before proceeding onward.

ii. Special Structures

Throughout history, special structures—like
sculptures, temples, churches, and other com-
munal spaces—have served as places of orienta-
tion within a city. Such monuments help serve
as local landmarks, and cities often evolve
around and accommodate for historical mon-
uments. Thus, I wanted to model a few such
monuments that could potentially shape how

4

Welcome to Polygon Precinct • May 2019

a city is structured, and inform the orientation
and alignments of pathways and buildings.

Since these special structures are few and far
between within a city, meaning that they do
not require the use of procedural generation
to assemble large quantities with slight varia-
tions, I used Blender to hand-model them. I
modeled three places of congregation: one re-
sembling a temple of Greek or Roman descent,
one resembling a modest-sized church, and
one resembling a basic tower. I also modeled
three sculptures: one monolith, one humanoid,
and one quadruped animal.

Figure 4: Top: temple, church, and tower models
Bottom: monolith, human, quadruped models

iii. City Assemblage

Some of the first computer-aided represen-
tations of cities I encountered in my youth
came packaged inside of video games. Sim-
City, Pokemon—though these games promised
cities, their cities were unrealistic. Granted, it
is fair that the focus of many games that fea-
ture cities, like Pokemon, use the term "city" to
convey a locale that serves as a hub for quests,
items, and characters—and thus, the city is

meant to act as a means of story progression,
not as any legitimate representation of a real
city. But for a game like SimCity, which derives
its name from the portmanteau of "simulation"
and "city", promising a simulation of a city and
failing to deliver upon it is a more egregious
oversight. In this section, I will first delve into
some of the more notable representations that
exist for CG cities currently, and then move to
discuss considerations that CG cities aiming
for realism may benefit from.

Figure 5: Pewter City, from Pokemon FireRed and
LeafGreen[17]

We’ll begin by taking a look at Pewter City,
from the original Kanto region of Pokemon
FireRed and LeafGreen[17]. Ignoring the 2D-
birds-eye-view affordance of having all build-
ings face the same direction, there is something
else immediately off about Pewter: it is ex-
tremely sparse! From a realistic point of view,
it is audacious for a town of 6 buildings, each a
fair walk away from the next, to call itself a city.
However, in the Pokemon sense of the word,
Pewter is a bona-fide city; after all, Pewter is
home to its own Pokemon Gym, where the
player can battle a Gym Leader for their next
badge on their quest to capture all the Poke-
mon in the Kanto region. Pewter City serves
its purpose perfectly at that level: it has all
the buildings relevant to the player’s needs—
including the Gym, a Pokemart to resupply
at, and a Pokemon Center to heal at—and a
means of getting from one to the next. Even

5

Welcome to Polygon Precinct • May 2019

if a city of 6 buildings would be hardly called
a town in real life, when contextualized in the
game of Pokemon, Pewter is a city through-
and-through.

Figure 6: SimCity, mobile version[18]

Next, we’ll take a look at the more recent iter-
ations of SimCity for mobile devices [18]. Fig-
ure 6 shows one such screenshot—and while
it may, at a glance, look to resemble the cities
we are accustomed to much more closely than
Pewter City from Pokemon, it is not without
its own visualization errors. For one, these
buildings are built atop empty green land—
that greenery representing authentic nature be-
fore mankind’s intrusion. Except, in a land
of such dense urban development like the one
pictured here, skyscrapers are hardly being
built over newly found land. Rather, such de-
velopment would likely occur in populous ar-
eas of already-developed cities: areas deemed
worthy of further investment. The surround-
ings should already be concrete and cement;
there shouldn’t be grassy land in sight, save for
the occasional park. Furthermore, each build-
ing appears to be a skyscraper distinct from
the buildings surrounding it. It occupies its
own plot of land, leaving space between it and
the next lot over. However, simply walking
through a city will call to attention that most
cities are so densely packed, that these sorts of
alleyways rarely exist between adjacent build-
ings lining the side of the road on a given block.
To have each building be cordoned off to the
point where no two adjacent buildings share a
single wall is unheard of.

Figure 7: 3D renders of a city via Shadertoy[15]

SimCity is not the only city generator to
have encountered these issues, and its treat-
ment of the issues may be more justified given
that there are other gameplay factors driving
these issues of representation within the game.
Looking at user otaviogood’s 3D Skyline ren-
der from Shadertoy[15], we see that they run
into similar issues: although the first image in
Figure 7 makes a compelling case for a gener-
ative city from afar, a closer look at the road-
ways in their representation reveals that blocks
are split by roads into equally-sized squares,
with each one containing a singular building of
varying structure. It looks good from afar and
above, but there are fundamental issues with
the underlying reasoning behind a choice like
this one—namely, it is completely unnatural.
No city in the world harbors such a structure,
so why does this generative one?

Even if it makes no sense, it’s easy to think
about, and easy to implement. The first "city-
esque" render I made was similar: a large num-
ber of buildings situated at coordinate-aligned
points on a grid. As seen in Figure 8, from afar,
it’s dense and city-esque—but that city-like
perception is superficial at best.

In reality, cities are made up of streets lined

6

Welcome to Polygon Precinct • May 2019

Figure 8: Render of a basic, gridded city-like

with buildings that create pathways to navi-
gate an otherwise urban jungle. What I wanted
to achieve was urban density, but with the
legitimate road and block structure of a real
city—unlike Pewter City, which is too sparse
and poorly organized, and unlike SimCity and
other 3D renders, which look superficially like
cities but lack real urban structure. To this
end, I decided that the best place to start gen-
erating cities would be to generate a road net-
work first. I adopted road-first template-based
generation as the method I would be using to
generate road structures[10]. Template-based
generation entails creating algorithms to gener-
ate road structures based off a certain desired
configuration, which acts as your "template".

When deciding what my templates would
be, I studied a few modern cities—New York
City, Boston, and Paris, specifically—to gain an
understanding of how their road systems were
structured [3, 14, 16]. These three led me to
create 3 initial templates for constructing road-
ways: gridlike templates, as seen all through-
out NYC and in other pre-planned cities; ra-
dial templates, as seen around the Arc de Tri-
omphe in Paris, and to a lesser degree, other
monuments; and random templates, seen inter-
spersed between and across other roadways.

iv. Templates

After exporting the models from Maya and
Blender, I moved to Unity to algorithmically

construct templates to generate these cities.

Figure 9: Google Maps view of NYC [14]

Using NYC as a reference, gridlike templates
were implemented by making an algorithm
that took parameters for grid width and height,
and created two dictionaries: one for vertices,
which stored vertex names as keys with their
Vector3 locations as values, and one for edges,
which stored vertex names as keys with a list
of their connected vertices as values. Separate
parameters for width and height allow it so
there can be variation in the rectangular form
of these gridlike blocks, meaning that like NYC,
avenues and streets can be at different intervals.
Our grid is therefore not confined to squares,
making it more robust than coordinate-aligned
grid city models. In the assembleGrid method,
the loop from lines 1-6 determines and ap-
pends each position to the vertex dictionary.
Afterwards, adjacent edges are connected in
the edge dictionary.

Figure 10: Grid road structure

7

Welcome to Polygon Precinct • May 2019

1 void assembleGrid(){
2 for (int x = 0; x < gridWidth;

x++){
3 float xIdx =

x*(renderDist/gridWidth) -
(renderDist/2);

4 for (int z = 0; z < gridHeight;
z++){

5 float zIdx = z *
(renderDist /
gridHeight) -
(renderDist / 2);

6 Vector3 pos = new
Vector3(xIdx, 0, zIdx);

7 vertices.Add(""+names[x] +
names[z], pos);

8 \\...
9

10 void radialBranches(){
11 for (int x = 0; x < numBranches;

x++){
12 float angle = (360/numBranches)

* x + Random.Range(-15, 15);
13 float len = renderDist /numLvls;
14 Vector3 pos = new Vector3(len *

Mathf.Cos(angle *
Mathf.Deg2Rad), 0,
len*Mathf.Sin(angle *
Mathf.Deg2Rad));

15 vertices.Add(names[0] + names[x]
+ "", pos);

16 radialHelper(numLvls-1,
numBranches-1, names[0]+
names[x]+"", angle);

17 \\...
18

19 Dictionary<string, Vector3>
randomVertices(){

20 for (int x = 0; x < numLocii; x++){
21 \\...
22 Vector3 pos = new

Vector3(Random.Range
(-renderDistance,
renderDistance), 0,
Random.Range(-renderDistance,
renderDistance));

23 cube.transform.position = pos;
24 vertices.Add(names[x]+"", pos);
25 \\...

Code 3: Methods to generate city templates

Figure 11: Google Maps view of Paris [16]

Based off the roads in Paris surrounding
the Arc de Triomphe, radial templates were
constructed by first determining how many
branches the radial pattern would begin with,
and how many levels the radial pattern would
continue out for. At each successive branch, the
recursive radial helper function called in line
x decreases the number of levels and branches
until all levels are exhausted, creating a radial
tree-like pattern where successive branches
shrink in size until dissipating.

Figure 12: Radial road structure

The random templates are not based off any
cities in particular. Rather, these templates are
intended to have a less regimented structure
compared to the grid and radial templates, and
include more triangulation, odd angles, and
strange partitions. While I am not taking into
account natural terrain, as all my city gener-
ations have occured on artificially flat planes,
random templates help model the strange road
structures that sometimes occur from incon-
venient hills, waterways, and natural features.
The randomVertices method creates a parame-

8

Welcome to Polygon Precinct • May 2019

terized number of vertices at random locations
within the given render distance, then creates
random connections between said values in the
vertex dictionary.

Figure 13: Random road structure

Figure 14: Google Maps view of Boston [3]

Independently, these templates account for
potential portions of cities, but not all cities ad-
here to a singular template. Looking at North-
ern Boston, we can see that there seems to be
some combination of randomness and gridlike
roadways happening[3]. Thus, my next step
was to create dual-layer templates that incor-
porated these templates I had already made,
and organized roadways into two divisions:
super-structures, and sub-structures. Super-
structures refer to the larger roadways that
facilitate broad movement across a city, and
sub-structures refer to the smaller passages
that allow for movement within specific areas
of a city. For instance, I would classify this
portion of Boston as having randomness in the
super-structure, and a gridlike sub-structure.

Translated into a dual-layer template, a Boston-
like road structure takes on the appearance of
Figure 15.

Figure 15: Boston-like dual-layer road structure

v. Visualization

Once roadways were constructed and stored in
dictionaries, I generated buildings flush against
one another along both sides of each road seg-
ment, then deleted those that intersected the
roads themselves to create some semblance of
city blocks. Furthermore, I color-coded build-
ings to make it more immediately apparent
which buildings were modern, and which were
traditional. Modern buildings are dyed in sun-
set shades of orange-red; Traditional buildings
are wooden brown, to evoke older materials
used in buildings.

Figure 16: Boston-like city visualization

9

Welcome to Polygon Precinct • May 2019

To balance the spread of traditional build-
ings amongst the modern ones, I created pa-
rameters chanceOld and clusterOld to deter-
mine the chance of the next building being
traditional given that the prior building was ei-
ther a) modern, meaning that this would be the
chance of a traditional building in the midst
of modernity, or b) traditional, meaning that
this would be a traditional building in a cluster
of traditional buildings. Many cities still have
both: the occasional historical artifact amongst
towering buildings, and the old-town district
full of remnants of the past. Figure 16 has some
discernible clusters of old buildings, while Fig-
ure 17 depicts a quaint, older town with greater
separations between each house. As a means

Figure 17: Radial old town visualisation

of highlighting the abstract nature of these rep-
resentations, I coded a toon shader to heighten
the non-photorealistic appearance of the vi-
sualizations and give them a more cartoony,
flatly-shaded feel.

vi. Traversal

Figure 18: Pigeon atop a roof

Up until this point, I had been viewing my
cities in the Unity Scene view, for easier orien-

tation and observation. However, I wanted to
know what it would look like to traverse the
world I had generated from the world’s own
scale. So, I modeled, textured, and animated
a bird, then mounted the player’s camera atop
said bird. The world became traversable from
the back of everyone’s favorite city-dweller: the
pigeon.

Figure 19: On the back of a pigeon

I also created a pigeon-spawner in the mid-
dle of any given city that tosses out pigeons
spiraling around in random arcs. These gener-
ative pigeons lack any sense of collision detec-
tion... a behavior real pigeons exhibit, too.

III. Growth

In the second part of my project, I focused on
methods of generating 2D skylines. The tool I
used to output my own was Shadertoy, a tool
for creating and sharing WebGL shaders on-
line. The visualizations done by other com-
munity members provided a good starting
point for me, allowing me to establish what
the canonical skyline representation is, and use
that canon as a starting point to determine new
ways in which it could be changed to account
for social factors relating to growth. Hence, the
final goal was to create an abstract represen-
tation of the city skyline that comments upon
social conditions within cities.

i. Canon

Before we begin to look at reconstructions of
skylines via CG shaders, let’s first make sure
we’re on the same page as to what areal skyline

10

Welcome to Polygon Precinct • May 2019

Figure 20: Boston skyline at night [2]

looks like. Refer to Figure 20, which shows the
skyline of Boston at night: brightly lit against
the dark, desaturated blue of night[2]. Good?
Good.

Figure 21: Canonical visualization of a 2D skyline [9]

The canonical visualization for a 2D skyline
shader is like that seen in Figure 21, made by
Shadertoy user gsingh93[9]. Comparing it to
a real skyline, we can see that it demonstrates
considerations like: multiple layers of build-
ings with varying colors, getting darker as they
recede into the distance; scrolling horizontal
movement over time, as if watching the skyline
pan by through the window of a train; and
varying heights at regular intervals, with each
plateau representing a distinct building.

ii. Time

Interestingly enough, when we take a look at
the code for Figure 21’s representative shader
in Code 4, we’ll note that the uniform vari-
able iTime is only used once: on Line 6 as
a means of making the city scroll across the
screen over time. However, cities are subject
to numerous changes over time. In fact, the
first thing we can do to improve upon this
city is acknowledge the passage of time in its

1 void mainImage(out vec4 fragColor, in
vec2 fragCoord) {

2 vec2 p = fragCoord.xy /
iResolution.xy;

3 float col = 0.;
4 for (int i = 1; i < MAX_DEPTH;

i++) {
5 float depth = float(i);
6 float step = floor(200. * p.x /

depth + 50. * depth +
iTime);

7 if (p.y < noise(vec2(step)) -
depth * .04) {

8 col = depth / 20.;
9 //...

Code 4: Canonical 2D skyline shader [9]

1 float col = 0.;
2 vec3 color = 0.3 + 0.7 * ((cos

(iTime/4.+ p.xyx+ vec3(0,0,20))));
3 \\...
4 col = 1.-(depth / 50. + 0.80);
5 color = (color*0.8 + vec3(col)*0.2);

Code 5: Incorporating iTime to create time-sensitive sky
and add fog to city

visualization—-which can be accomplished by
turning the background into a gradient of hues
that simulate the colors the sky takes during
the day, through sunset, into the evening, and
so on.

To emphasize the sky and "skyline" nature
of the visualization, I adjusted the perceived
"angle" at which we are viewing the city, com-
pressing the levels together closer to the bot-
tom of the screen, and changing the colors of
the buildings to various shades of grey that
get lighter the further away they are—as if
being enveloped by urban fog, which makes
distant objects harder to see. Code 5 shows
how given these updated grey buildings and
multi-colored sky, we can fully implement the
idea of "fog" by taking a weighted average of
the current sky color and the building color
for each depth of buildings. Adjusting the

11

Welcome to Polygon Precinct • May 2019

coefficients of the weighting allows us to con-
trol the fog’s dissipation: weighting the sky
color higher means our fog will appear more
thick, and further away building depths will
be harder to see; and weighting the building
color higher means our fog will appear to dis-
sipate, making the faraway buildings stand out
clearly against the horizon. The new visual-
ization, seen in Figure 22, has the sky feature
more prominently as a reminder of the passing
time.

Figure 22: Visualization of 2D skyline with time-
sensitive sky

iii. Growth

So far, we’ve begun to account for time at the
temporal level. However, we have yet to show
what effect that temporality has upon the city’s
buildings themselves! In fact, when thinking
about how cities change over time, the growth
of cities cannot be ignored. Urban sprawl and
gentrification rule modern-day cities: where
urban life can be funneled into and out of areas
at the drop of an eviction notice, or an updated
zoning code[6, 13].

In order to account for growth over time
in the city, we must incorporate iTime when
determining the height of a given building, in-
stead of leaving it all up to a random seed. To
do so, I wrote a function called height, which
turns the shader into a clip of LOOP_INT sec-
onds that demonstrates the growth of a city
over time; Code 6 shows the height method,
which works by resisting building height ran-
domization at a rate inversely proportional to
the runtime of LOOP_INT. The resistance is

1 float height(vec2 p, float dep){
2 return 0.1 + .5 * ((1. - dep/

float(MAX_DEPTH)+iTime/80.) -
(1. - random(p) /
((float(LOOP_INT) -
mod(iTime,float(LOOP_INT))) /
3.))) - dep * .02;

3 }

Code 6: Height function for growth in skyline

greatest at the start, and zero by the end of
the (currently) 90-second interval: visualized,
the shader initializes the city with all build-
ings uniformly low—but as time passes, the
growth of these buildings begins to spike, as if
simulating the gentrification of slums by sud-
den development of luxury condos. The city
gradually increases in the number of buildings
it contains by adding more and more layers
of buildings, increasing in height, until a sud-
den explosion of exponential growth envelops
at the end of 90 seconds. Figure 23 shows
how little growth occurs between the 45- and
70-second screencaps, but massive growth oc-
curs at the 85-second screencap, enveloping the
screen[7].

Figure 23: Screencaps at 45-, 70-, and 85-seconds in
90-second growth clip

12

Welcome to Polygon Precinct • May 2019

1 float height(vec2 p, float dep){
2 return 0.+ .5*((1. - dep/

float(MAX_DEPTH) + iTime/80.)
+ random(p)/(iTime/5.)) - dep
* .02;

3 }

Code 7: Height function for decay in skyline

iv. Decay

Last, but not least, comes the foil to growth:
decay. Just as sudden growth is liable to hit a
city and cause buildings to suddenly skyrocket
into skyscrapers, urban decay in areas of long-
standing neglect are similarly common in large
cities.

To simulate this, I adjusted the height func-
tion seen in Code 7 such that the randomiza-
tion now decreases as a function of time in-
creasing, and at a much more slow and steady
pace than the growth cycle. As Figure 24 shows,
the clip begins with us panning out from right
next to a building, leading into a long stretch
of buildings slowly starting to flatten out and
stop growing, until the city eventually piles
up and flatlines beneath stagnant rows of flat-
tened buildings after 180 seconds have passed—
though the process continues off-screen, be-
yond our viewport. After all, decay is an ongo-
ing process[8].

IV. Conclusion

While procedural generation is by no means a
small field, there is still much room for expan-
sion in generative methods that go beyond su-
perficial appearances, and pay more attention
to the rationale governing the logic of struc-
tures. In my research on methods for gener-
ating structure in 3D models and growth in
2D shaders, I encountered several procedural
visualizations of cities that lacked the logic to
generate what could truly be considered a gen-
erative representation of a city.

This room for growth in the area of procedu-
ral generation holds not only for environments

Figure 24: Screencaps at 5-, 40-, 100-, and 150-seconds
in 180-second decay clip

like cities, but also for more granular genera-
tive projects—for instance, like marble textures
that simulate the process a metamorphic rock
goes through as it crystallizes. However, such
a feat is easier said than done. To create ac-
curate representations requires an individual
both the means to generate procedurally, and
the specific knowledge of whatever is being
generated. Likewise, the biggest limitation I en-
countered while completing my research was
that my knowledge of urban design and plan-
ning was not as deep as I would have liked;
for this project, I focused on researching and
implementing methods for procedural gener-
ation, applying only basic principles of urban
design and planning. However, should I de-
cide to resume working on this project down
the line, I would like to devote more time to
studying urban politics and design first, and
use that to influence and inspire new directions
for procedural generation.

In the future, I’m curious to expand upon
procedurally generating 3D cities given a spe-
cific terrain. Understanding how terrain inter-
acts with the pre-planning for, or gradual de-
velopment of, a city over time is integral when
trying to represent at how real cities have come
into being. After all, Rome wasn’t generated in

13

Welcome to Polygon Precinct • May 2019

a day.

V. Acknowledgements

I’d like to extend my deepest gratitude to Pro-
fessor Nick Montfort, who has been my advisor
for the duration of this project! His insight has
constantly pushed me to think in new direc-
tions and try new things, and his encyclopedic
knowledge of all things generative-art-related
never ceases to amaze me. You’re the best!
Thanks for dealing with me!!

References

[1] Aracthor. "How to Generate a City Street
Network?" Game Development Stack Ex-
change, Stack Exchange Inc, 27 May 2016,
gamedev.stackexchange.com/questions/
122015/how-to-generate-a-city-street-
network.

[2] Baetscher, Eric. "File:Boston Night
pano1.Jpg." Wikimedia Commons, Wiki-
media Foundation, 20 Nov. 2007, com-
mons.wikimedia.org/wiki/File:Boston_
night_pano1.jpg.

[3] Boston, Massachusetts, USA. Google Maps,
2019, maps.google.com.

[4] Buck, Jamis. "Dungeon Level." AARG,
AARG Net, 2003,

[5] Buck, Jamis. "Random Dungeon
Design: The Secret Workings of
Jamis Buck’s Dungeon Generator."
AARG, AARG Net, 20 Feb. 2003,
web.archive.org/web/20080203123815/
www.aarg.net/m̃inam/dungeon_design
.html.

[6] Frederick, Matthew. 101 Things I Learned
in Architecture School. MIT, 2007.

[7] Gerr, Joanna. "Sky-
line_2D_GrowthOverTime."
Shadertoy, Beautypi, May 2019,
www.shadertoy.com/view/wlX3W2.

[8] Gerr, Joanna. "Sky-
line_2D_DecayOverTime." Shader-
toy, Beautypi, May 2019,
www.shadertoy.com/view/WlfGD2.

[9] gsingh93. "Skyline Explanation."
Shadertoy, Beautypi, 23 June 2015,
www.shadertoy.com/view/4tXSRM.

[10] Kelly, George, and Hugh McCabe. "A Sur-
vey of Procedural Techniques for City
Generation." CityGen: Procedural City Gen-
eration, www.citygen.net/files/ Procedu-
ral_City_Generation_Survey.pdf.

[11] Martek, Craig, "Procedural generation of
road networks for large virtual environ-
ments" (2012). Thesis. Rochester Institute
of Technology.

[12] Mikoleit, Anne, and ÌĹPurckhauer, Moritz.
Urban Code: 100 Lessons for Understanding
the City. MIT Press, 2011.

[13] My Brooklyn LLC.; a documentary by
Kelly Anderson and Allison Lirish Dean;
director, Kelly Anderson ; producers, Alli-
son Lirish Dean and Kelly Anderson.My
Brooklyn. [New York] :New Day Films, 2012.
Print.

[14] New York City, New York, USA. Google
Maps, 2019, maps.google.com.

[15] otaviogood. "Skyline." Shader-
toy, Beautypi, 24 Sept. 2015,
www.shadertoy.com/view/4tXSRM.

[16] Paris, France. Google Maps, 2019,
maps.google.com.

[17] "Pewter City." Pokemon
Wiki, Wikia Inc, poke-
mon.fandom.com/wiki/Pewter_City.

[18] Whitlatch, Adam. "Opinion: A SimCity
View of Education Won’t Fix Philly
Schools." PhillyVoice, WWB Holdings, 4
Apr. 2017, www.phillyvoice.com/opinion-
a-simcity-view-of-education-wont-fix-
philly-schools/.

14

	Introduction
	Structure
	Buildings
	Special Structures
	City Assemblage
	Templates
	Visualization
	Traversal

	Growth
	Canon
	Time
	Growth
	Decay

	Conclusion
	Acknowledgements

